nexteck.com

">

国产人妻无码一区二区三区_成人三级做爰av_日韩高清毛片_久久久久国产精品老师性教育影院_日韩av片观看_黄色在线观看www

Toll free:+86-400 882 8982 中文 ENG

A Shape Memory Alloy Retains Efficiency Even at High Temperatures

Using computer simulation, Alberto Ferrari calculated a design proposal for a shape memory alloy that retains its efficiency for a long time even at high temperatures. Alexander Paulsen manufactured it and experimentally confirmed the prediction. The alloy of titanium, tantalum and scandium is more than just a new high-temperature shape memory alloy. There are many successful examples of the application of high temperature memory alloys in the aerospace field. The most typical one is the huge antenna on artificial satellites.

1575431511944632.jpg

Avoiding the unwanted phase

Shape memory alloys can re-establish their original shape after deformation when the temperature changes. This phenomenon is based on a transformation of the crystal lattice in which the atoms of the metals are arranged. 

Researchers refer to it as phase transformation. "In addition to the desired phases, there are also others that form permanently and considerably weaken or even completely destroy the shape memory effect," explains Dr. Jan Frenzel from the Institute for Materials. The so-called omega phase occurs at a specific temperature, depending on the composition of the material. To date, many shape memory alloys for the high temperature range would withstand only a few deformations before they became unusable once the omega phase set in.

Promising shape memory alloys for high temperature applications are based on a mixture of titanium and tantalum. By changing the proportions of these metals in the alloy, researchers can determine the temperature at which the omega phase occurs. "However, while we can move this temperature upward, the temperature of the desired phase transformation is unfortunately lowered in the process," says Jan Frenzel.


Admixture alters properties

The RUB researchers attempted to understand the mechanisms of the onset of the omega phase in detail, in order to find ways to improve the performance of shape memory alloys for the high-temperature range. To this end, Alberto Ferrari, Ph.D. researcher at Icams, calculated the stability of the respective phases as a function of temperature for different compositions of titanium and tantalum. "He was able to use it to confirm the results of experiments," points out Dr. Jutta Rogal from Icams.

In the next step, Alberto Ferrari simulated small amounts of third elements being added to the shape memory alloy of titanium and tantalum. He selected the candidates according to specific criteria, for example they should be as non-toxic as possible. It emerged that an admixture of a few percent of scandium would have to result in the alloy functioning for a long time even at high temperatures. "Even though scandium belongs to the rare earths and is, consequently, expensive, we only need very little of it, which is why it's worth using anyway," explains Jan Frenzel.

1575431367602321.png

Prediction is accurate

Alexander Paulsen then produced the alloy calculated by Alberto Ferrari at the Institute for Materials and tested its properties in an experiment: the results confirmed the calculations. A microscopic examination of the samples later proved that even after many deformations no omega phase was found in the crystal lattice of the alloy. "We have thus expanded our basic knowledge of titanium-based shape memory alloys and developed possible new high-temperature shape memory alloys," says Jan Frenzel. "Moreover, it's great that the computer simulation predictions are so accurate." Since the production of such alloys is very complex, the implementation of computer-aided design proposals for new materials promises much faster success. New alloy technology will benefit relavent field, Nexteck Technology's engineers are very interested in this sort of memory alloy.


Attend exhibitions, focus on industry devolpment trend and new technology,Nexteck Technology Limited keeps pace with the times ,exploring and innovating so as to achieving continuous development.


TAG:   Shape Memory Alloy memory alloy high temerature memory alloy

24-hour hotline:+86-400 882 8982

logo.png

Providing real-time and high quality service

NEXTECK (CHINA) - SHENZHEN
Tower A1001, Galaxy Century, No 3069, CaiTian Rd, Futian District, Shenzhen, China
Zip Code: 518026
Tel: +86-755-8256-1631
Fax:+86-755-8256-1691
E-mail:nexteck@nexteck.com
Hotline:+86-400 882 8982

PRODUCTION PLANT
Wenchuan Rd, Alley 5300/1, Baoshan District, Shanghai, China
Zip Code: 200942
Tel: +86-21-3638-0189
Fax: +86-21-3638-0109
E-mail: nexteck@nexteck.com.cn

主站蜘蛛池模板: 免费看无码自慰一区二区 | 久久久久久久久久国产 | www久久com| 91精品国产欧美一区二区 | 精品自拍视频 | 欧美人与禽ZOZ0善交 | 午夜欧美一区二区三区免费观看 | 一本久道综合在线中文无码 | 亚洲精品成人无限看 | 欧洲人妻丰满AV无码久久不卡 | 天天色图综合网 | 国产精品露脸高清86网站888 | JK小仙女自慰流白浆免费网站 | 亚洲欧洲日产国码无码网站 | 国产中文字幕欧美 | 国产乱插 | 午夜高清国产拍精品 | 在线v片免费观看视频 | 国产果冻豆传媒麻婆 | 亚州中文字幕 | 国产精品国产三级国产普通话一 | 国产一区精品福利 | 爱爱午夜视频 | 99极品在线| 香蕉高清永久在线视频 | av网站免费在线观看 | 桃花视频大全不卡免费观看网站 | 国产在线超碰 | 国产一级义婬片AAA毛片久久 | 高清国产天堂在线bt免费 | 色婷婷久久一区二区三区麻豆 | 亚洲AV无码男人的天堂在线 | 久久中文在线 | 欧洲AV无尺码 | free性欧美69巨大 | 又爽又色又高潮的免费软件 | 日本一区二区三区四区在线播放 | 台湾一区二区三区 | 三年片高清在线观看八戒 | 国语对白乱子 | 在线视频一区二区三区三区不卡 |